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Definitions

" Pharmacokineties (PK) describes the time

course of drug concentrations resulting from a
particular dosing regimen

® Pharmacodynamics (PD) expresses the
relationship between drug concentrations and
the resulting pharmacological effects in term of
safety and efficacy




Population PK/PD Model

A Population PK/PD Model is an integrated model including:

® A model describing the time course of drug
concentrations vs. time (PK)

®" A model describing the relationship of effect vs.
concentration (PD)

" A model linking the PK measurements to the PD
observations

"  Astatistical model describing variability on
individual response (inter and intra subjects) and
on measurements



Understanding Drug Response &
Variability
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From empirical to mechanistic models
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Dose Selection: Modeling Exposure-Response
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Indirect response PK/PD model
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Basic Models of Indirect Response

In the simplest scheme, the rate of change of the response when no
drug is present is described by

dR

dt = Kin — kouR

where k;, represents the zero-order rate constant for production of
response, R, and k_, is the first-order rate constant for the loss of
response variable. The response variable R may be a directly measured

entity or an observed response, which is immediately proportional to the
concentration of R

As the system is assumed to be stationary for these models, the response
variable (R) begins at a predetermined baseline value (R0O), changes with
time following drug administration, and eventually

returns back to RO. Thus, k;, = kRO

out




Schematic of the four basic models of

Model | n [ 1Y)

The solid bars represent inhibition and the open bars represent
stimulation of the input and output functions

The inhibitory function, /(t), and the stimulatory function, 5(t),
can be described as

| - E.C
l(t)=1- ¢ S(ty=1+

C—FIC;,D C+EC§D




Categorical Data

e Data from clinical trial may be available as discrete or
categorical data
e cure or symptom relief — yes/no
e adverse event —yes/no
e Pain relief or adverse event - normal, mild , moderate,
severe

e With only two categories, the outcome is called binary outcome

* With multiple categories, the data may be
 nominal (no order) data — e.g. race, sleep stage
e ordinal (ordered categorical data) — mild moderate,
severe




Binary or Ordered Categorical Data

« There may be only one observation per subject e.qg.
cure/no cure or multiple observations e.g. Nausea/Rash

« The underlying theory for modeling such data is same

« One observation per individual — most severe
observation — link summary/average PK parameter eg.
C,vg Or AUC (0-t)

 Loss of information — specifically information over time

- Easier or simpler model

 Logistic regression or proportional odds model




Binary Data

 Aim is to develop the model where the P(y) can be
explained by some covariate or predictor variable (x;)

e This refers to the conditional mean of Y given the
independent variable (x) E(Y|x)

* For linear regression we have something like
Y=Bg + ByXyt+ Byx, + ...

e With binary data (0/1) we need to transform the data to
allow for the estimation of the probability (with values
ranging from O to 1)




- Modeling the Probability of AE
- (Somlolence)

A logistic model was used to describe the probability (p) of

observing a somnolence event as function of the maximal
Individual plasma concentration (Cmax)

The probability p was estimated by :

A = intercept + slope - C_ .,

ek

1+e

Where: A is the logit function, ‘intercept’ is the intercept of

the logistic function and ‘slope’ is the coefficient of the
predictor variable




Exposure/AE model
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Ordered Categorical data

* This is extension of the binary data model
 Multiple logits are defined

e Cumulative probability is estimated

P(Y<l)
P(Y<?2)




| What is time-to-event (TTE) analysis?

e Often called survival analysis

e Events may include a PD effect (vomiting,
experiencing pain, et...), death, injury, onset of
illness, recovery from illness, DROPOUT, ...

e Goalisto:

> Estimate TTE for a group or groups of
individuals

> To assess the relationship of covariates to TTE
> To be able to predict TTE



Concentration-to-event

e Terms:

> Concentration-to-event: The drug concentration from
entry into a study until an event occurs

> (Right) Censoring: Occurs if study ends before a subject
has an event

+ We know that the subject did not experienced the event at least
at the maximal Cp measured

e Data Structure:

> Cp; = Maximal concentration observed or concentration
at event

> Censoring data value:
¢, =1 if Cp, is associated with an event;

¢; =0 if Cp; indicates the maximal concentration observed
(ho event)



Concentration-to-event analysis

Concentration-to-event analysis is a collection of statistical
procedures for data analysis for which the outcome variable is

the drug concentration at which an event occurs

The concentrations (Cp) at which an event occurs is considered as
a random variable having a probability distribution

The distribution of Cp is characterised by the:

= Probability Density Function f(Cp)

= Cumulative Probability Density Function F(Cp)=Prob(CP<=Cp)

* Concentration-to-event function S(Cp) = Prob(CP>Cp) =1-F(Cp): the
probability that the event occurs at a concentration lower than ¢

= Hazard function h(Cp)=(dF(Cp)/dCp)/S(Cp) : the probability that an
Individual who has not yet experienced the event, will have it at the
concentration ¢




With the Hazard we can compute the rest ...

The Hazard is a function of Cp defining the instantaneous
rate of an event:

h(Cp) = A(Cp)

S() Is the probability of not having an event within
that concentration interval (a-b) (survival):

b
-[h(cp)

S(Cp)=e




Drug-Disease-Trial Model
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Integrated model

Tumour growth in Tumour growth in
control animals treated animals
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Survival as a function of Tumor Size
reduction
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Definition of Study Efficiency

An ideal Study efficiency
treatment would
provide complete =l
response (max s
median survival ©
time) for all = S -
su.bjecjcs in the % g | ®
trial without AE : T
c 8- An ineffective
E s treatment is
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Clinical Trial Simulation

Monte Carlo Simulation
Dose: 80mg AE Study efficiency
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