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Pharmacometrics is the science of interpreting and 

describing pharmacology, physiology, disease, and 

patients’ characteristics in a quantitative fashion 

by integrating and applying mathematical and 

statistical models jointly with decision analysis  

to characterize, understand, gain insights into the 

determinants of efficacy and safety outcomes, 

predict a drug’s outcomes, optimize drug 

development and enable critical decision making 
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• Pipeline pressures on the back of patent expirations 
• Profitability in the face of declining research & development 

budgets 
• An ageing patient population becoming increasingly reliant 

on chronic medicines 
• Global epidemic threats 
• Fewer new targets, no more low hanging fruit 
• Limited use of internal and external historical data 

Leverage learning and historical knowledge integration by 
managing and analyzing available data efficiently to generate 
knowledge and novel insight and support decision-making 
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Traditional Paradigm: re-active 
˃ Dose selection 

˃ Identify covariates that influence exposure and exposure-
response relationship 

˃ Provide support for drug label recommendations  

 

Pharmacometrics Paradigm: pro-active 
˃ Drug-Disease-Trial Model Paradigm rather that simply 

Population PK/PD models to provide rationale for predicting  
(Treatment Effect) 

• Use model(s) to quantify variability and uncertainty in predicted  

˃ Use as data generation model in clinical trial simulations (CTS) 
to assist in evaluation of designs 

˃ Use meta-analytic model to predict/estimate  for comparison 
with competitor 
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> Focus on predicting clinical trial outcomes 

• Evaluating the compound’s performance in the proposed trial 

> Model-based predictions of   

> Quantification of variability and uncertainty in  

• P() denotes uncertainty distribution specified through the 
multivariate uncertainty distribution of model parameters 

> Evaluate designs based on a quantitative assessment of 
the compound’s capabilities using CTS methods 

 Probability of success – P(success) = P(T  CRE*) 

 Probability of correct decision – P(correct) 

• Correct Go Decision:  when T  CRE and   CRE 

• Correct No Go Decision: when T < CRE and  < CRE 

* Clinically Relevant Effect 
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• Tumor Growth Model 
• Drug PK Model 
• Covariate Model 
• PK/Tumor Growth Model 
• Survival Model 
• AEs Model 
• Drug-Disease-Trial Model 
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• Most every drug approved in cancer was first tested in a 
xenograft model to determine its anticancer activity 
 

• Human tumor fragments are subcutaneously implanted into 
the flank of nude or severe combined immunodeficient mice  
 

• Xenograft mice develop human solid tumors based on 
implantation of human cancer cells.  
 

• Once the tumors reached a predefined size, the mice are 
randomized to different treatment groups 
 

• The doses are given and tumor size is measured over a period 
of time defined by the protocol 
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E 

cycling 
cells 

 E natural cells proliferation  
 

 Tumor growth is known to follow an exponential growth followed by a 
linear growth component 
 λ0 and λ1 represents the rate of exponential and linear growth 

 
 Et threshold tumor mass at which the tumor growth switches from 

exponential to linear 

𝑑𝐸

𝑑𝑡
= λ0 ∙ 𝐸     𝐸 ≤ Et 

𝑑𝐸

𝑑𝑡
= λ1              𝐸 > 𝐸𝑡 
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𝑑𝐸

𝑑𝑡
=  

𝜆0 · 𝐸

 1 +   
𝐸 · 𝜆0
𝜆1

 
𝜓

 

1
𝜓   

 

M. Simeoni et al., Cancer research 64, 1094–1101, 2004 

Integrated model accounting for exponential and linear growth 

 As long as the tumor weight E is smaller than Et, the growth rate is 
approximated exponential growth 
 

 When the tumor weight E becomes larger than Et, the growth rate 
becomes linear 
 

 The ψ parameter allows the system to pass from the exponential to 
linear growth sharply 
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𝑑𝐴

𝑑𝑡
= −𝑘𝑎 ∙ 𝐴 

𝑑𝐶

𝑑𝑡
= 𝑘𝑎 ∙ 𝐴 − 𝑘𝑒𝑙 ∙ 𝐶 

𝐶𝑜𝑛𝑐 =
𝐶

𝑉
 

𝑘𝑒𝑙 =
𝐶𝑙

𝑉
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 The delay between drug administration and tumor cells death is modeled using a 
transit compartment model (named x1, x2 and x3), this is characterized by a damage 
rate constant k1. The average time-to-death of a damaged cell is equal to n/k1 
(where n is the number of transit compartments), In the present case the average 
time-to-death is: 3/k1 
 

 The model assumes that the drug elicits its effect decreasing the tumor growth rate 
by a factor proportional to Cp (drug concentration) time E through a constant 
parameter k2, which is, thus, an index of drug efficacy (potency) 

M. Simeoni et al., Cancer research 64, 1094–1101, 2004 
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𝑑𝐴

𝑑𝑡
= −𝑘𝑎 ∙ 𝐴 

𝑑𝐶

𝑑𝑡
= 𝑘𝑎 ∙ 𝐴 − 𝑘𝑒𝑙 ∙ 𝐶 

𝐶𝑜𝑛𝑐 =
𝐶

𝑉
 

𝑘𝑒𝑙 =
𝐶𝑙

𝑉
 

𝑑𝐸

𝑑𝑡
=  

𝜆0 · 𝐸

 1 +    
𝑤(𝑡) · 𝜆0

𝜆1
 
𝜓

 

1
𝜓   

− 𝑘2 · 𝐸 · 𝐶𝑜𝑛𝑐 

PK 

Tumor Growth 

𝑑𝑥1
𝑑𝑡

= 𝑘2 · 𝐸 · 𝐶𝑜𝑛𝑐 − 𝑘1 ∙ 𝑥1 

𝑑𝑥
2

𝑑𝑡
= 𝑘1 · (𝑥1- 𝑥2) 

𝑑𝑥
3

𝑑𝑡
= 𝑘1 · (𝑥2- 𝑥3) 

𝑤 𝑡 = 𝐸 + 𝑥1+ 𝑥2+ 𝑥3 
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• vehicle () 

• 10 mg/kg as single dose () , or 
• once every 4 days for 2 treatments () 

  
• vehicle ()  
• 3 mg/kg as single dose () , or 
• once every 4 days for 2 treatments() 
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The target plasma concentration (CT) associated with the 
tumor eradication can be estimated from the tumor growth 
model 

 CT = 𝜆0/k2  
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• Pre-clinical xenograft studies were conducted on:  
5-fluorouracil, cisplatin, docetaxel, doxorubicin,etoposide, gemcytabine, 
irinotecan, paclitaxel, vinblastine, vincristine 

 

• The pre-clinical data were used to evaluate the potency 
parameters(k2) of each drug 
 

• Strategy: Establish a correlation of the active clinical doses of the 
selected anticancer agents the with the pre-clinical model-based 
parameters 
 

• Active clinical dose: the lowest and highest commonly used 
dose levels defined as the cumulative amount given over a 3-
week period 

M. Rocchetti et al. European journal of cancer 43 (2007) 1862 –1868 
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Scatter plot of the systemic exposures, simply derived from the clinical doses as AUC = 
Dose/CLh (where AUC = area under the plasma concentration-time curve and Dose = 
midpoint of the range of active clinical doses), versus the k2 values estimated in animals 
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Wang Y., Sung C., Dartois C., Ramchandani R., Booth B.P., Rock E., and Gobburu J. (2009) Elucidation of relationship between 
tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development. Clin. 
Pharmacol. Ther. 86, 167-174. 

• Four registration trials for NSCLC provided 9 different 
regimens that were either first-line or second-line treatments 
for locally advanced or metastatic NSCLC 
 

• Various risk factors for survival were screened based on Cox 
proportional hazard model. Tumor size dynamic data were 
described with a disease model that incorporates both the 
tumor growth property and the regimen’s anti-tumor activity 
 

• Patient survival times were described with a parametric 
survival model that includes various risk factors and tumor 
size change as predictors 
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Wang Y., Sung C., Dartois C., Ramchandani R., Booth B.P., Rock E., and Gobburu J. (2009) Elucidation of relationship between 
tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development. Clin. 
Pharmacol. Ther. 86, 167-174. 

• TS(t) tumor size at time 
t for the ith individual 

• BASEi is the baseline 
tumor size 

• SRi is the exponential 
tumor shrinkage rate 
constant, 

• PRi is the linear tumor 
progression rate 
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Wang Y., Sung C., Dartois C., Ramchandani R., Booth B.P., Rock E., and Gobburu J. (2009) Elucidation of relationship between 
tumor size and survival in non-small-cell lung cancer patients can aid early decision making in clinical drug development. Clin. 
Pharmacol. Ther. 86, 167-174. 

• T is the time to death (day),  
• α0 is the intercept, 
• α1, α2, and α3 are the slopes 

for ECOG (Performance 
Status grade), , centered 
baseline, and PTRwk8 
(percentage tumor reduction 
from 

• baseline at week 8),  
• εTD is the residual variability 
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λ

λ

e1

e
p




A logistic model was used to describe the probability (p) of 

observing a Rash event as function of the maximal individual 

plasma concentration (Cmax) 

 

The probability p was estimated by : 

Where: λ is the logit function, ‘intercept’ is the intercept of the 

logistic function and ‘slope’ is the coefficient of the predictor 

variable 

λ = intercept + slope · Cmax  
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 An ideal 
treatment would 
provide complete 
response (max 
median survival 
time) for all 
subjects in the 
trial without AE 

An ineffective 
treatment is 
characterized by a 
poor medial survival 
and a high incidence 
of AEs 
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1. What about the efficiency of a study based on a 

dosage regimen of 80mg/day  or 100mg/day?  

2. What about the efficiency of a study based on a 

dosage regimen of 50mg/day with a loading dose of 

100mg (the first day)?  

3. What about a back-up compound with a clearance 

reduced by 25%? 

 

Use Clinical Trial Simulation  to address the clinical 

development questions: 
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The Simulation 4 
(loading dose 
strategy) provide the 
best efficient study 
design scenario …. 


