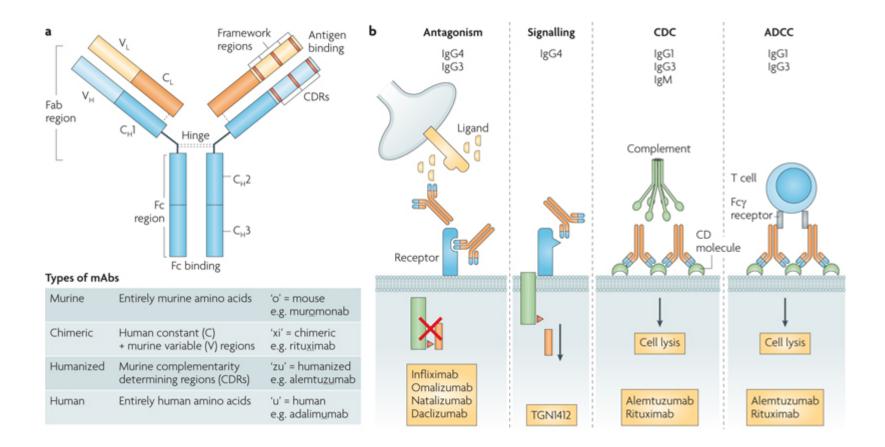
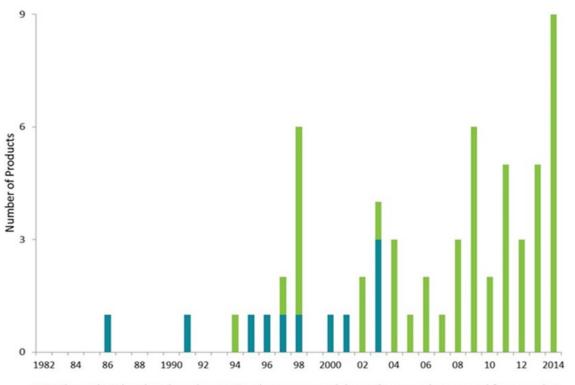
Biologics & risk in phase I studies How do we do it better?

Dr Richard FitzGerald Director, Clinical Research Unit, RLUH Consultant Physician, CPT & GIM, RLUH Molecular & Clinical Pharmacology, UoL

Richard.Fitzgerald@liverpool.ac.uk



Mechanism of action

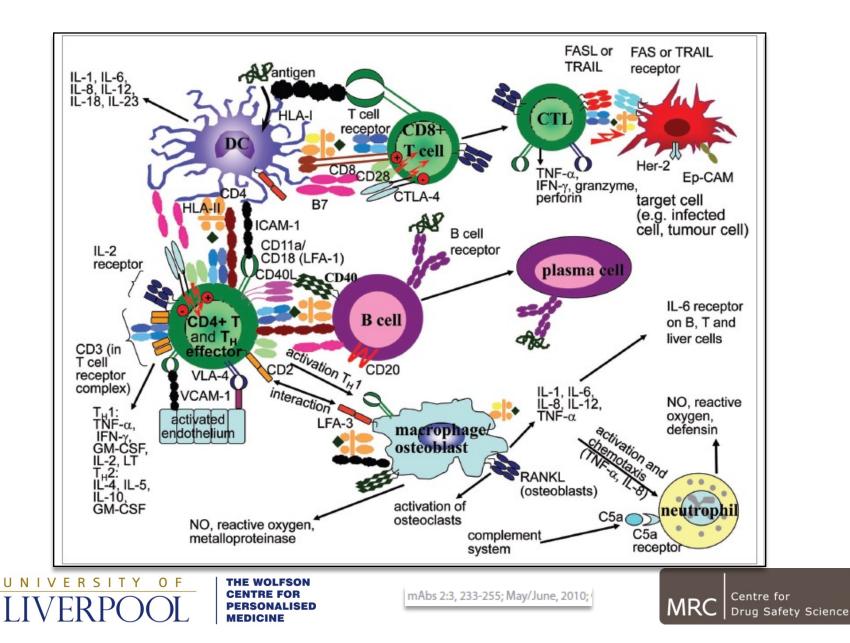


Nature Reviews | Drug Discovery

Bigger, better, more?

MAbs and MAb-related products Products approved, but subsuguently removed from market

The graph displays the number of monoclonal antibody products first approved for commercial sale in the US or Europe each year since 1982. The totals include all monoclonal antibody and antibody-related products. Products approved but subsequently removed from the market are denoted in blue; products currently marketed are denoted in green. For 2014, the figure includes the total number of products approved as of December 31.


INN name	Trade name	Company	Species/isotype	Target	Inflammatory indication(s)	МоА
Muromonab	Orthoclone- OKT3®	Janssen-Cilag	Mouse IgG2a	CD3	Organ rejection (renal, heart, liver)	Inhibits T cell function.
Daclizumab	#Zenapax®	Roche	Humanized IgG1	IL-2R	Organ rejection (renal)	Inhibits T cell function
Rituximab	Rituxan™, Mabthera™	Biogen-IDEC, Roche	Chimeric IgG1	CD20	RA*	B cell depletion by ADCC, CDC and apoptosis
asilixumab	Simulect®	Novartis	Chimeric IgG1	IL-2R	Organ rejection (renal)	Inhibits T cell function
nfliximab	R emicade®	Johnson & Johnson	Chimeric IgG1	ΤΝFα	RA, CrD, UC, AS, Ps, PsA	Blocks TNFα -mediated leukocyte migration, inhibition of apoptosis, macrophage, osteoclas and EC activation
tanercept	Enbrel®	Amgen, Pfizer	Human TNFR-FclgG1	ΤΝFα	RA, Ps, CrD	Blocks TNFα -activity
Alemtuzumab	Campath®	Genzyme, Bayer	Humanized IgG1	CD52	RA, MS	Depletes leukocytes (T and B cells monocytes, macrophages) by ADCC
Adalimumab	Humira™/ Trudexa	AbbVie	Human IgG1	τνγα	RA, CrD, AS, Ps, PsA, JIA	Blocks TNFα -activity
Omalizumab	Xolair®	Genentech, Roche, Novartis	Humanized IgG1	IgE	Allergic asthma	Blocks IgE binding to, and cross-linking of, FceRI on mast cells
falizumab	#Raptiva®	Genentech, Merck-Serono	Humanized IgG1	CD11a (LFA-1)	Ps	Blocks inflammatory T cell migration
Alefacept	Amevive®	Astellas	Human LFA-3-FclgG1	CD2	Ps	Inhibition of T cell function (binds CD2 on T cells blocking interact with LFA-3 on APC).
Natalizumab	Tysabri®	Biogen IDEC, Elan	Humanized IgG4	CD49d (VLA-4)	MS, CrD	Blocks inflammatory T cell migration
\batacept	Orencia®	Bristol-Myers Squibb	Human CTLA4-FclgG1	CD80, CD86	RA, JIA	Inhibition of T cell function (binds to CD80 & CD86 on APCs lead to blocking of CD28 interaction and T cell activation)
Eculizumab	Soliris®	Alexion	Humanized IgG2/4	C5	PNH	Blocks complement C5, inhibiting its cleavage to C5a and C5b and generation of membrane attack complex C5b-C9
Certolizumab pegol	Cimzia®	UCB	Humanized Fab-PEG	ΤΝFα	CrD	Blocks TNFα activity
Golimumab	Simponi™	Johnson & Johnson	Human IgG1	ΤΝFα	RA, AS, PsA	Blocks TNFa activity
Canakinumab	llaris®	Novartis	Human IgG1	IL-1β	CAPS	Blocks IL-1β-mediated leukocyte migration, macrophage & osteocla activation, DC activation, Th17 differentiation
ociluzumab	Actemra®, RoActemra®	Roche, Chugai	Humanized IgG1	IL-6R	RA	Blocks IL-6-mediated B/T cell and osteoclast activation, inhibition of cell apoptosis, Th17 differentiation
Jstekinomab	Stelara™	Johnson & Johnson	Human IgG1	IL-12/23 (p19)	Ps	Blocks IL-12-mediated TH1/NK cell activation & TNFα/IFN-γ release blocks IL-23-mediated TH17 cell expansion and IL-17/IL-22 release
elimumab	Benlysta Lymphostat B	Human Genome Sciences/Glaxo Smith Kline	Human IgG1	BLyS (BAFF)	SLE	B cell depletion by apoptosis (Block Blys binding to BCMA, BAFFR and TACI required for B cell maturation/survivial)
Belatacept	Nulojix®	Bristol-Myers Squibb	Human CTLA-4-lgGFc-lgG4	CD80, CD86	Organ rejection (renal)	Inhibition of T cell function (binds to CD80 & CD86 on APCs leadi to blocking of CD28 interactions & T cell activation)

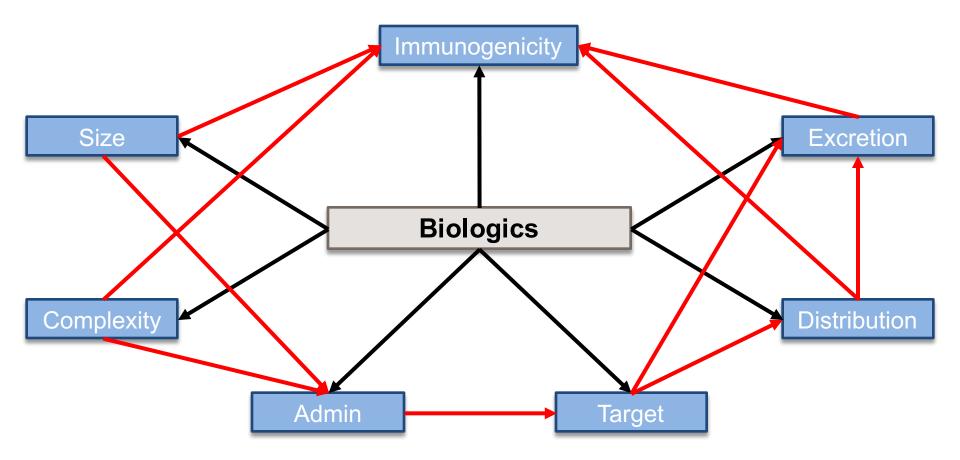
INN name	Company	Species	Target	Indication(s)	MoA
Gevokizumab	Xoma-Servier	Humanized IgG2	IL-1β	Uveitis (non- infectious)	Blocks IL-1ß activity
Mepolizumab	Glaxo Smithkline	Humanized IgG1	IL-5	Asthma (eosinophilic)	Inhibits IL-5-mediated eosinophil maturation, activation and migration (binds IL-5 thereby blocking binding to IL-5R on eosinophils).
Reslizumab	Teva (Cephalon/ Ception Therapeutics)	Humanized IgG4	IL-5	Asthma (eosinophilic)	Inhibits IL-5 activity
Benralizumab	Astra Zeneca- Medimmune	Humanized IgG1 (afucosylated)	IL-5Rα	Asthma (eosinophilic)	Inhibits IL-5 activity
Sarilumab	Sanofi (from Regeneron)	Human IgG1	IL-6Rα	RA	Inhibits IL-6 activity
Sirukumab	Janssen	Human IgG1	IL-6	RA	Inhibits IL-6 activity
Lebrikizumab	Roche	Humanized IgG4	IL-13	asthma	Blocks IL-13-mediated B cell proliferation/IgE production, mast cell and eosinophil recruitment, M2 macrophage activation, eotaxin production, collagen synthesis, mucus production and bronchoconstriction
Secukinumab	Novartis	Human IgG1	IL-17A	Ps, RA/PsA, AS	Blocks IL-17A-mediated pro-inflammatory cytokine/chemokine production, granulocyte and monocyte mobilization, TNFα/IL-1β production, ICAM-1 expression, DC maturation, EC and osteoclast activation
lxekizumab	Eli Lilly	Humanized IgG4	IL-17A	Ps, PsA, RA	Blocks IL-17A activity
Brodalumab	Amgen	Human IgG2	IL-17RA	Ps	Blocks IL-17A, E,F-activity
Ocrelizumab	Roche	Humanized IgG1	CD20	MS	Induce B cell depletion by ADCC, CDC and apoptosis induction
Epratuzumab	UCB	Humanized IgG1	CD22	SLE	Induces downregulation of the B cell receptor, inhibition of B cell activation and B cell reduction
Atacicept	Merck-Serono	Human TACI ECD-FclgG1	BlyS (BAFF)	SLE	Induces B cell depletion by apoptosis induction resulting in inhibition of B cell function (blocks Blys and APRIL required for B cell maturation & survivial)
Tabalumab	Eli Lilly	Human IgG4	BLyS (BAFF)	SLE	Induces B cell depletion by promotion of apoptosis (blocks Blys binding to BCMA, BAFFR and TACI required for B cell maturation and survivial)
Vedolizumab* Itolizumab	Takeda- Millenium Biocon	Humanized IgG1 Humanized IgG1 kappa	α4β7 CD6	UC, CrD Ps; RA, MS	Inhibits Lymphocyte migration to gut Inhibits CD6-mediated T cell activation, cytokine production and migration

THE WOLFSON DRUG DEVELOPMENT RESEARCH 75 : 115–161 (2014) Centre for Drug Safety Science **CENTRE FOR** PERSONALISEP MEDICINE

A new paradigm

Biologics are not small molecules

Biologics – Safer? Or not?


- Very target specific
- Less potential for off-target effects
- 'Simpler' metabolic pathway (generally)

Risk of exaggeration of on-target effect? Characterisation of biological pathway? Comparison between animal species and human?

Small molecule vs biologics

Size & Complexity - risks

- Very large molecules
 - 1 kDa to 1000 kDa
- Complex biochemistry
 - Protein folding
 - PEGylation
 - Disulphide bridges
 - Phosphorylation, sulphation, acetylation, carboxylation

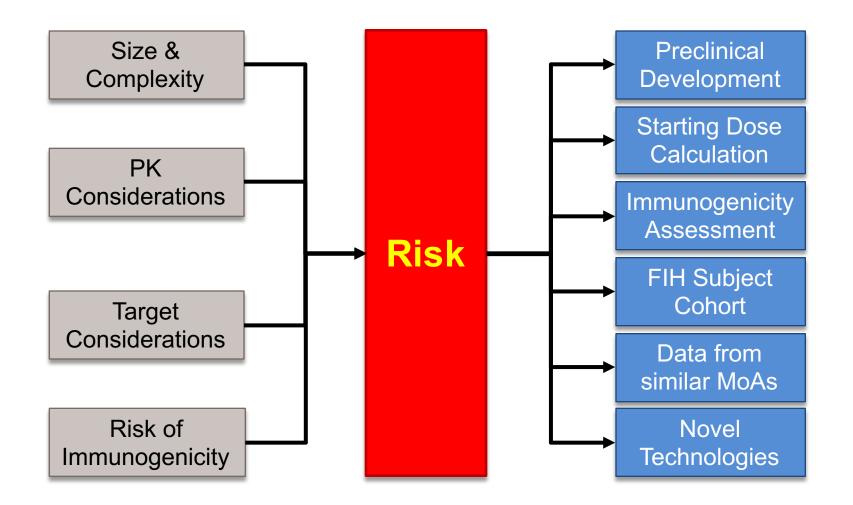
Unpredictable in vivo behaviour Risk of interaction with unexpected targets Immunogenicty

Pharmacokinetics - risk

- Slow absorption (tmax = days if SC dose)
- Apparent small distribution
 - 2-4L typical
 - Beware paracellular or transcellular transport (endocytosis)
- Excretion via protein degradation
 - Lysosymal
 - Non-linear PK is typical
 - No effect from renal / hepatic function
 - Beware smaller proteins

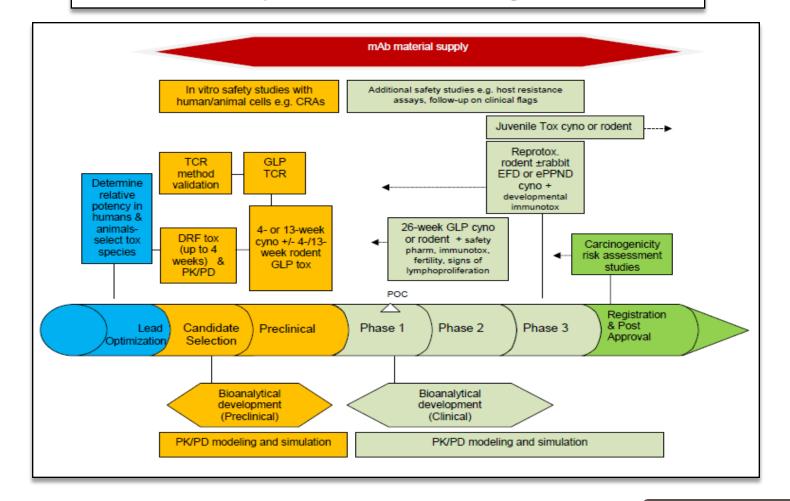
Target - risk

- Characterisation of target
 - Distribution
 - Effect + downstream consequence
- Cell based target?
 - Affects kinetics of IMP (higher apparent clearance at lower doses)
- Soluble target?
 - Affects kinetics of IMP (saturation kinetics)
- Target expression in disease?
 - Choice of population?


Immunogenicity - risk

- Development of ADAs
- Increased clearance
- Infusion reactions
- Unclear long term effects for healthy volunteers

Risk Mitigation for Biologics



Optimized Nonclinical Safety Assessment Strategies Supporting Clinical Development of Therapeutic Monoclonal Antibodies Targeting Inflammatory Diseases

Frank R. Brennan,* Annick Cauvin, Jay Tibbitts, and Alison Wolfreys Preclinical Safety, New Medicines, UCB-Celltech, Slough SL1 3WE, UK

THE WOLFSON CENTRE FOR PERSONALISED MEDICINE DRUG DEVELOPMENT RESEARCH 75 : 115–161 (2014)

Nonclinical strategy considerations for safety pharmacology: evaluation of biopharmaceuticals

Hugo M Vargas[†], Hamid R Amouzadeh & Michael J Engwall

- Science based approach
 - Clear rationale, evidence based = regulatory acceptance
- Integrated safety pharmacology
 - Do with GLP tox (usually NHP 4- or 13- week)
 - Less concern for hERG inhibition / interaction
 - Less concern for CNS toxicity (NB indirect effects)
 - Immunogenicty assessment in vivo and in vitro
- Immuno-pharmacology
 - Human / animal species
 - Dose-response
 - Assessment of CRS

Expert Opin. Drug Saf. (2013) 12(1):91-102

Generic name	Target	Relevant species	Major tox. studies performed	Observed effects
Muromonab	CD3	Rhesus macaque	2-week tox. study with 10-month observation period	1 number and size of germinal centers in spleen and LNs.
Daclizumab	IL-2R	Cynomolgus macaque (cyno)	Single dose tox. in mice and rabbits 4-week tox. in cynos	None
Rituximab	CD20	Cyno	8-week tox., EFD and PPND studies in cynos	B cells in blood and lymphoid organs of mothers and infants
Basilixumab	IL-2R	Rhesus, Cyno	4-week tox. in rhesus macaques, EFD study in cynos.	None
Infliximab	TNFα	Mouse (surrogate)	26-week tox., fertility, EFD & PPND studies with anti-mouse TNFα surrogate mAb in mice	None (possibly slight ↓male fertility, bilateral crystalline deposits in lens capsule of males of unknown relevance)
Etanercept	ΤΝFα	Cyno, Rat, rabbit	26-week tox. study in cynos 12-week immunogenicity studies in mice, rats and rabbits; EFD and PPND studies in rats, EFD study in rabbits.	None (mild Teosinophil and lymphocytes at injection site)
Alemtuzumab	CD52	Супо	30-day tox. study in cynos (ADA restricted dosing duration)	↓WBCs, lymphopenia, neutropenia, ↓serum total protein & albumin
Adalimumab	ΤΝFα	Супо	39-week tox. and EFD-PPND studies in cynos	↓thymus weight and involution, ↓splenic follicular centers and DCs;↓T cells in thymus and B cells in spleen (males only)
Omalizumab	lgE	Супо	26-week tox., fertility (mating) & EFD-PPND studies in cynos; juvenile tox. studies of up to 26 weeks in cynos.	↓Platelets in adult cynos, TCP in juvenile cynos
Efalizumab	CD11a (LFA-1)	Mouse (surrogate)	26-week non-terminal study in chimpanzees; 4-week tox., fertility, EFD and PPND studies with anti-mouse CD11a surrogate mAb in mice; 6-month carcinogenicity study in p53 KO mice.	↓humoral response, ↑WBC, ↓LN cellularity; ↓DTH a and TDAR responses
Alefacept	CD2	Cyno, baboon	44–47-week tox, and ÉFD-PPND studies in cynos; 3-month study in baboons	↓T cells in blood and lymphoid organs; mild↓TDAR to KLH but not HSA; lymphoma in 1 animal after 28 weeks.
Natalizumab	CD49d (VLA-4)	Cyno, rhesus, guinea pig, mouse	 2-week tox. study in mice; 26-week tox. and EFD studies in cynos, 26-week juvenile tox. study in cynos. Fertility, EFD and PPND in guinea pigs; 4-week combination tox. study with Avonex (IFN-β) in rhesus; assessed effect of mAb on VLA-4-expressing tumor growth in vitro and in SCID and nude mice 	(↑WBC, ↑reticulocytes, ↑spleen weight and follicular hypertrophy, ↓liver and thymus weight (neonates only), lymphoplasmacytic inflammation of the colon; ↓female fertility; glomerulonephritis in cynos related to immunogenicity; anaphylaxis in guinea pigs related to immunogenicity.

 THE WOLFSON

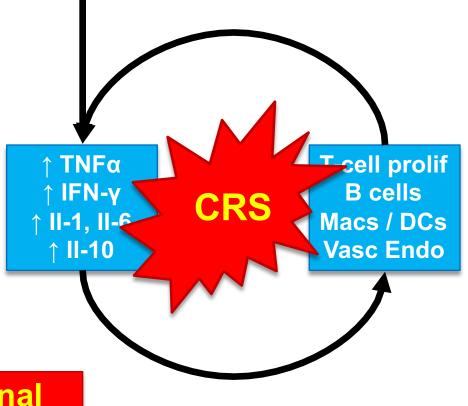
 CENTRE FOR

 PERSONALISED

 MEDICINE

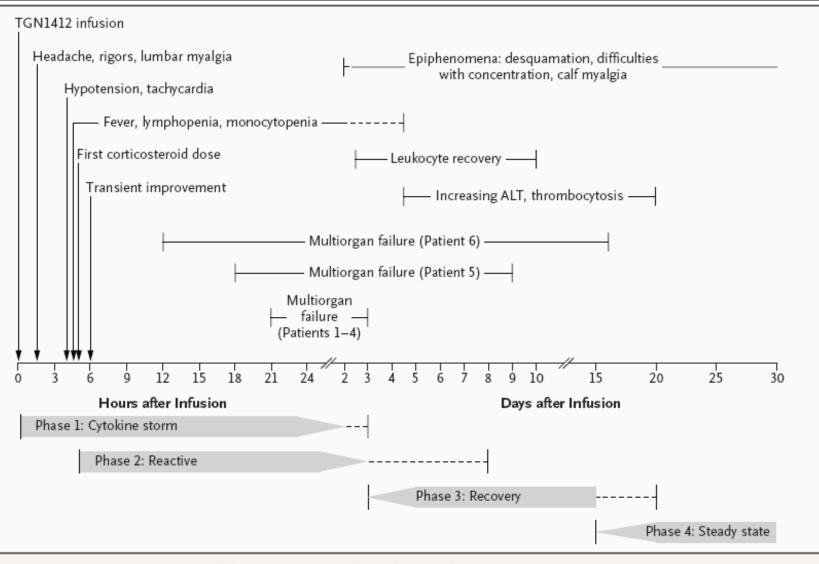
 DRUG DEVELOPMENT RESEARCH 75 : 115–161 (2014)

Key things to look for


- Comparability with humans
 - Animal model (NHP, homologous target in other?)
 - In vitro work
- Target
 - Nature (cell based, soluble)
 - Receptor occupancy
 - Dose response curve
 - Evidence of CRS or immune depletion
- High risk IMP for CRS
- Immunogenicity

Risk of CRS

- ESG / EMEA
- High risk if:
 - Bind TLRs etc
 - Bind 'master switches'
 - Fcγ functionality
 - Multivalent
 - Cause proliferation / expansion
 - Agonistic activity


Target

stimulation

May have no clear signal from NHP

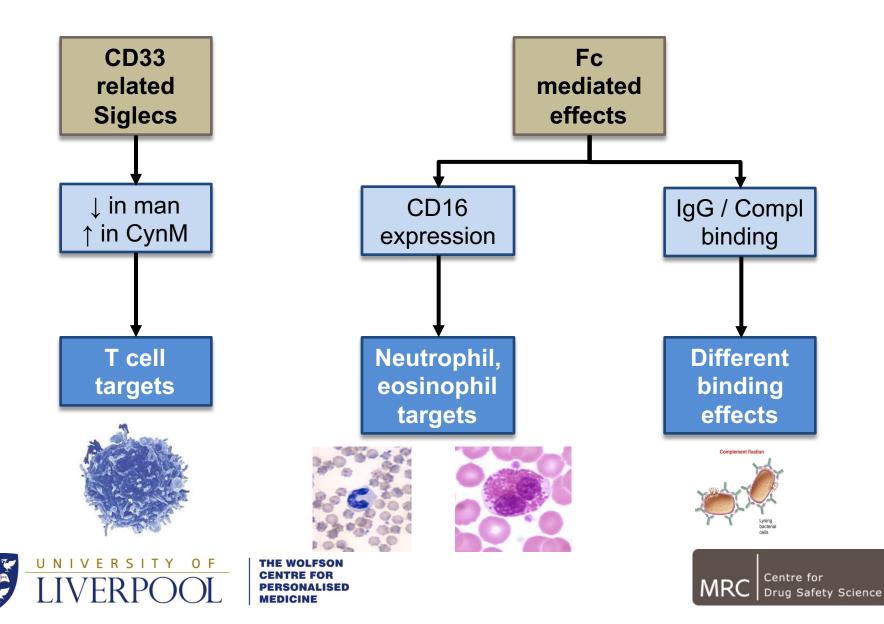


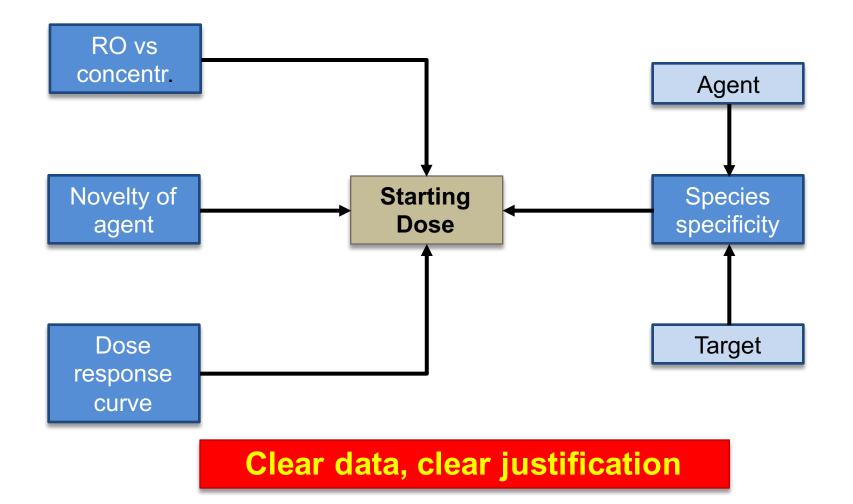
Figure 1. Summary Timeline of the Main Events after Infusion of TGN1412.

The course is divided into four phases: cytokine storm, reactive, recovery, and steady state. ALT denotes alanine aminotransferase. Dashed lines represent the responses of Patients 5 and 6 (who were the most seriously ill).

NHP vs Human?


Safety Assessment and Dose Selection for First-in-Human Clinical Trials With Immunomodulatory Monoclonal Antibodies

PY Muller¹ and FR Brennan²


- Receptor occupancy model
- Predict starting dose for circa 10% RO
- Beware odd dose response curves
- Utilise a MABEL approach in most cases (always if high risk)
- Consider **all** data that are available

THE WOLFSON CENTRE FOR PERSONALISED MEDICINE CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 85 NUMBER 3 | MARCH 2009

Considerations for first dose.....

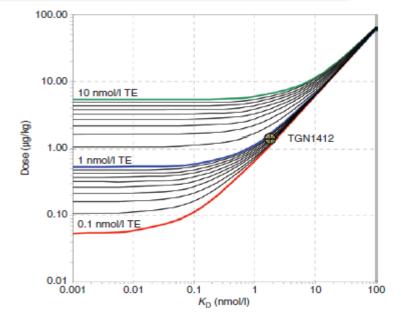
Safety Assessment and Dose Selection for First-in-Human Clinical Trials With Immunomodulatory Monoclonal Antibodies

PY Muller¹ and FR Brennan²

Eq. 1:
$$K_{D} = \frac{[Ab_{trav}] \cdot [Ta_{trav}]}{[Ab \circ Ta]} = \frac{(Ab_{tot} - Ab \circ Ta) \cdot (Ta_{tot} - Ab \circ Ta)}{Ab \circ Ta}$$

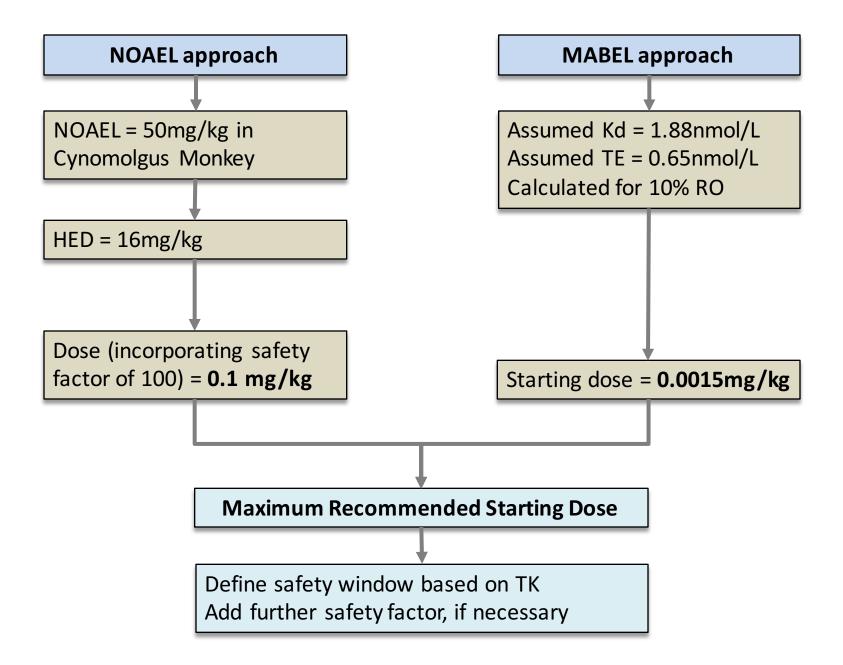
Eq. 2: $RO = \frac{Ab \circ Ta}{Ta_{tot}}$
Eq. 3: $Ab_{tot} = \frac{Ab_{molar doso}}{V_{initial, plasma}} \Rightarrow Ab_{doso} = Ab_{tot} \cdot MW_{Ab} \cdot V_{initial, plasma}$
Eq. 4: $Ab_{tot} = \frac{RO \cdot Ta_{tot} \cdot (RO - 1 - \frac{K_{D}}{Ta_{tot}})}{RO - 1}$

Figure 1 Equations 1–4. Receptor occupancy (RO) for monoclonal antibody/target interaction and calculation of dose. Under equilibrium, the binding of an antibody (Ab) to its target (Ta), leading to the formation of an Ab–target complex (Ab \circ Ta), is expressed by the mass–action law outlined in Eq. 1, whereby K_D represents the dissociation constant. In Eq. 2, RO is expressed as the fraction of the Ab–target complex relative to total target expression, TE (Ta_{tot}). In Eq. 3, the dose (Ab_{dose}) of the Ab is expressed by total Ab concentration (Ab_{tot}) multiplied by its molecular weight (MW_{Ab}; assumed to be 150 kDa) and the initial plasma distribution volume after intravenous administration ($V_{initial, plasma}$; assumed to be 0.036 l/kg). By combining Eqs. 1 and 2, the Ab_{tot} value can be expressed as shown in Eq. 4.


CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 85 NUMBER 3 | MARCH 2009

THE WOLFSON

MEDICINE


0

IVERSITY

Figure 2 Graphical representation of monoclonal antibody dose leading to 10% receptor occupancy (RO). The antibody dose leading to an RO of 10% is calculated based on Eqs. 3 and 4 in **Figure 1** as a function of the dissociation constant (K_D) for total target expression ranging from 0.1 nmol/l (red line) through 1 nmol/l (blue line) to 10 nmol/l (green line) in 10 scaling steps each. Molecular weight is assumed to be 150 kDa; initial plasma distribution volume is assumed to be 0.036 l/kg. The TGN1412 dose leading to a predicted RO of 10% in humans is depicted.

Immunogenicity

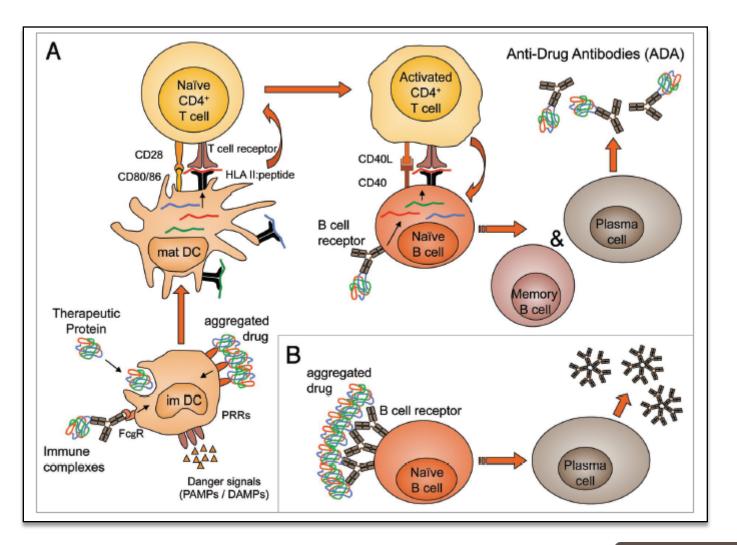

- Rational choice of mAb
- Avoid significant complement binding (avoid CDC)
- Activation of immune cells (NK, phagocytes, dendritic cells)
- Depletion of immune cells
- Cleavage of Ab

Table 3. Key functional c	haracteristic	cs of human	IgG subclass	ies
Subclass	lgG1	lgG2	lgG3	lgG4
Serum half-life (days)	21	20	7	21
FcRn ^a binding	++	++	+	++
FcγRI ^b binding	++++	-	++++	+++
FcyRIIA ^c binding	+++	+	++	+
FcyRIIB ^d binding	++	+	++	+
FcyRIIC [®] binding	++	+	++	+
FcyRIIIA ^f binding	+++	+/-	+++	+
FcyRIIIB ^g binding	++	-	++	-
C1q ^h binding	++	+	+++	-

Induction of Anti-Drug Abs

THE WOLFSON CENTRE FOR PERSONALISED MEDICINE

mAbs 2:3, 233-255; May/June, 2010;

Cross-reactive and pre-existing antibodies to therapeutic antibodies—Effects on treatment and immunogenicity

Karin A van Schie¹, Gerrit-Jan Wolbink^{1,2}, and Theo Rispens^{1,*}

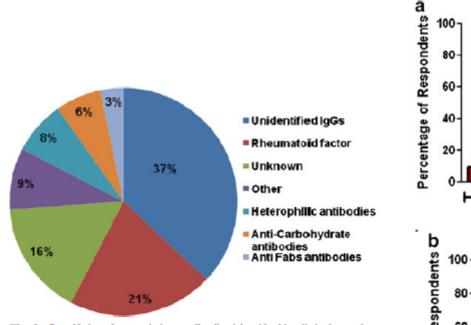
- Specific to mAb
 - Anti-idiotype
- Cross-reactive / pre-existing
 - Rheumatoid factor

0

- Anti-allotype
- Anti-hinge
- Anti-glycan

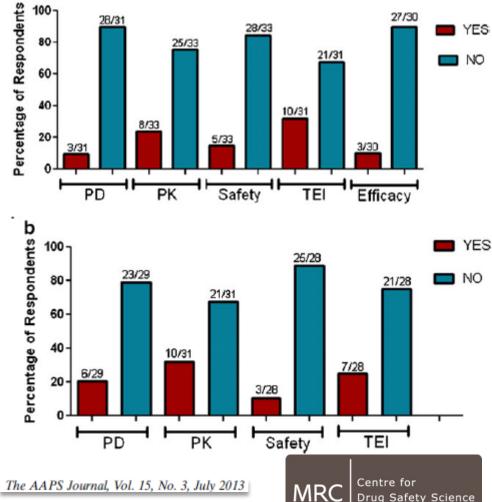
A complementarity determining regions framework regions framework regions CHT VH VH VH VH glycans	B neo-epitopes
allotopes CH2	C immune complex (?)
сну	LAAA

Drug	Effect
abciximab	presence of anti-hinge antibodies might be correlated with thrombocytopenia
cetuximab	IgE antibodies recognizing alpha-gal sugar moieties caused anaphylactic reactions in patients from certain regions in the United states
GSK1995057	in vitro and in vivo cytokine release was associated with antibodies recognizing framework regions of the drug (a VH domain) but not the intact antibody
rituximab	decreased in vitro complement-dependent cytotoxicity of rituximab was observed in the presence of rheumatoid factor


THE WOLFSON CENTRE FOR PERSONALISED MEDICINE

mAbs 7:4, 662-671; July/August 2015;

Pre-Existing Biotherapeutic-Reactive Antibodies: Survey Results Within the American Association of Pharmaceutical Scientists


Li Xue,^{1,7} Michele Fiscella,² Manoj Rajadhyaksha,³ Jaya Goyal,⁴ Claire Holland,⁵ Boris Gorovits,¹ and Alyssa Morimoto⁶

THE WOLFSON

MEDICINE

Fig. 2. Specificity of pre-existing antibodies identified in clinical samples

Evaluation of Pre-existing Antibody Presence as a Risk Factor for Posttreatment Anti-drug Antibody Induction: Analysis of Human Clinical Study Data for Multiple Biotherapeutics

Li Xue^{1,2} and Bonita Rup¹

Table III.	Prevalence o	f Pre-existing	Antibodies from	All Studies
------------	--------------	----------------	-----------------	-------------

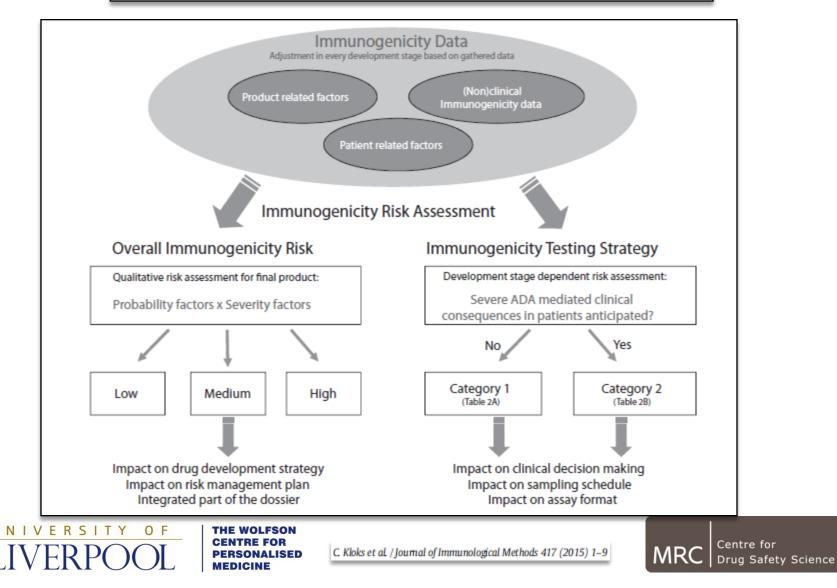
	Percentage	Number of subjects
In all study subjects	5.6%	(103/1830)
In healthy volunteers	0.6%	(3/499)
In all disease populations	7.5%	(100/1331)
In disease populations excluding RA	4.2%	(38/911)
In RA patients	14.8%	(62/420)

Table IV. Prevalence of Pre-existing Abs from Studies Associated with Pre-existing Antibodies

	Percentage	Number of Subjects
In all study subjects	10.8%	(103/950)
In healthy volunteers	3.6%	(3/84)
In all disease populations	11.5%	(100/866)
In disease populations excluding RA	8.5%	(38/446)
In RA patients	14.8%	(62/420)

Table V. Association with Posttreatment ADA Induction at Product Level

	Association with ADA induction	No association with ADA induction
Products with Pre-Ab	67% (4/6 ^a)	33% (2/6)
Products without Pre-Ab	60% (3/5)	40% (2/5)
Products with Pre-Ab and studied in RA	100% (3/3)	0% (0/3)


^a One of the seven products associated with pre-existing antibodies (Pre-Ab) was excluded from comparison with posttreatment ADA induction, as the pre-Ab was only observed in placebo group

A fit-for-purpose strategy for the risk-based immunogenicity testing of biotherapeutics: a European industry perspective

Cathelijne Kloks^{a,1}, Claudia Berger^{b,1}, Pierre Cortez^c, Yann Dean^d, Julia Heinrich^e, Lisbeth Bjerring Jensen^f, Vera Koppenburg^g, Stefan Kostense^h, Daniel Kramer^{i,*}, Sebastian Spindeldreher^j, Hishani Kirby^k

A fit-for-purpose strategy for the risk-based immunogenicity testing of biotherapeutics: a European industry perspective

Cathelijne Kloks^{a,1}, Claudia Berger^{b,1}, Pierre Cortez^c, Yann Dean^d, Julia Heinrich^e, Lisbeth Bjerring Jensen^f, Vera Koppenburg^g, Stefan Kostense^h, Daniel Kramer^{i,*}, Sebastian Spindeldreher^j, Hishani Kirby^k

	Non-clinical	Phase ISingle dose	Phase IMultiple dosing	Phase II and III
ADA assay format	Screen (99.9th)	Screen + conf	Screen + conf	Screen + conf
Sample collection	Frequent	At least baseline and end-of-study samples	Frequent	Frequent
Samples to be tested	Event driven	Event driven	At least baseline and end-of-study	At least baseline and end-of-study
Execution of testing	Batch wise at end of study if required	Batch wise at end of study if required	Batch wise at end of study	Batch wise at end of study
Neutralization	-	-	-	PD/If of added value: CLB or CBA
Characterization	-	-	If of added value	If of added value
B Testing strategy categ	ory 2. Biotherapeutics with	expected potential to elicit ADA-mediated	severe clinical consequences	
	Non-clinical	Phase ISingle dose	Phase IMultiple dosing	Phase II and III
ADA assay format	Screen (99.9th)	Screen + conf	Screen + conf	Screen + conf
and a monthly rotting		At least baseline and end-of-study	Frequent	Frequent
	Frequent	samples		
Sample collection	Frequent Event driven		All samples	All samples
Sample collection Samples to be tested		samples	All samples In a timely manner	All samples In a timely manner
Sample collection	Event driven Batch wise at end	samples All samples Batch wise for each cohort or		

Quantifying the risks of non-oncology phase I research in healthy volunteers: meta-analysis of phase I studies

Ezekiel J Emanuel,^{1,2} Gabriella Bedarida,³ Kristy Macci,³ Nicole B Gabler,⁴ Annette Rid,⁵ David Wendler⁶

Table 2 | Characteristics of drugs used in non-oncology phase I research studies

No (%) of participants receiving study drug by test site location		
Singapore	column)	
) 949 (37.2)	2552 (23.1)	
) 949 (37.2)	2552	
0 (0)	0	
62 (9.9)	627	
333 (51.3)	649	
202 (100)	202	
0 (0)	0	
48 (30.0)	160	
) 60 (20.1)	299	
157 (44.1)	356	
87 (33.6)	259	
.4) 1700 (24.1)	7049 (63.9)	
4) 1700 (25.4)	6716	
) 0 (0)	333	
) 370 (24.1)	1533	
) 148 (11.1)	1331	
) 265 (41.8)	634	
) 165 (44.4)	372	
) 79 (26.4)	299	
) 296 (38.2)	775	
) 130 (12.9)	1010	
3) 247 (22.6)	1095	
)	296 (38.2) 130 (12.9)	

Table 3 | Frequency and severity of adverse events in non-oncology phase I research studies

	Adverse events			Total (% are
Characteristic of studies	Mild	Moderate	Severe	for column)
No (%) of adverse events				
Total	20 840 (84.6)	3548 (14.4)	255 (1.0)	24 643 (100)
Type of agent:				
Small molecule	20 191 (85.2)	3260 (13.8)	243 (1.0)	23 694 (96.1)
Biologic	649 (68.4)	288 (30.3)	12 (1.3)	949 (3.9)

Table 5 Serious adverse events in non-oncology phase I research studies					
	No of serious adverse events by agent type				
Characteristic of studies	Small molecule	Biologic	Total No		
Total	33	1	34		
Caused by study drug*	10	1	11		
First day of study	4	0	4		
Placebo group	4	0	4		
Death	0	0	0		
Life threatening event	0	0	0		
Extended stay in phase I unit or hospital admission	26	1	27		
Medical or surgical intervention 1 +	11	1	12		
Persistent or major disability or incapacity	0	0	0		
Birth defect or anomaly	0	0	0		
and the second second					

BMJ 2015;350:h3271

Giving monoclonal antibodies to healthy volunteers in phase 1 trials: is it safe?

Elizabeth Tranter, Gary Peters, Malcolm Boyce & Steve Warrington

Hammersmith Medicines Research, London, UK

- Published data are poor
- 36 trials, 1799 HVs
- If TGN1412 included 1:425 -1:1700 volunteer trials of life-threatening AE
- If TGN1412 excluded 1:100000-1:1000000

- 1 A 31-year-old man had received a depot intramuscular injection of flupenthixol, 1 day before he received an intravenous infusion of a new anti-arrhythmic drug (eproxindine) which caused asystole and death [25].
- 2 A 19-year-old woman committed suicide (by hanging) while she was an inpatient in a phase 1 research unit, shortly after the protocol-specified, abrupt withdrawal of repeat dose treatment with the antidepressant duloxetine [26]. Although suicidal ideation and withdrawal effects of duloxetine have been reported, and young women very rarely hang themselves, the role of duloxetine withdrawal in this tragic event nevertheless remains uncertain.
- **3** A 24-year-old woman developed ARDS and died from multi-organ failure, after inhaling high dose hexamethonium in an exploratory, 'proof of principle' trial [27]. Although hexamethonium is an 'old' drug, the novel route and high dose mean that the drug was truly an IMP.

THE WOLFSON CENTRE FOR PERSONALISE

Br J Clin Pharmacol / 76:2 / 164–172

Healthy volunteer or patient?

- An age-old debate!
- Specifically for biologics:
 - Robustness?
 - Immunogenicity?
 - Potential indication?
 - PK?
 - Target expression?
 - Risk of AE vs benefit of treatment?

Workshop report

Nonclinical safety testing of biopharmaceuticals – Addressing current challenges of these novel and emerging therapies

Frank R. Brennan ^{a, *}, Andreas Baumann ^b, Guenter Blaich ^c, Lolke de Haan ^d, Rajni Fagg ^e, Andrea Kiessling ^f, Sven Kronenberg ^g, Mathias Locher ^h, Mark Milton ⁱ, Jay Tibbitts ^a, Peter Ulrich ^f, Lucinda Weir ^e

- Bi-specific scaffolds
- PK/PD designs to optimise safety
- Prediction of cytokine release and CRS
- Better immunogenicity assessment

Key issues

Preclinical work

- Ensure fit for purpose, relevant to molecule and species
- Adequate prediction of transition to humans
- No set design justify on scientific rationale

Transition to clinical studies

- Safe starting dose
- Base on RO and MABEL
- Interrogation of preclinical work

Immunogenicity

- Understand impact
- Ensure that study design incorporates risk of immunogenicity
- ADA assessment judiciously
- Trial Participant
 - Healthies vs patients
 - Previous exposure to biologics?

Concluding thoughts.....

- Predicting risk is key
- Aside from TGN1412, safety profile for biologics are reasonable
- Check ADA levels (as an exclusion) only when risk of immunogenicity is high or in subjects previously exposed to a biologic
- Re-exposure to a biologic is okay, providing risk of immunogenicity is low (to previous and current molecule)

Human regulatory T cells are selectively activated by low-dose application of the CD28 superagonist TGN1412/TAB08

Paula Tabares¹, Susanne Berr¹, Paula S. Römer^{1,2}, Sergej Chuvpilo², Alexey A. Matskevich³, Dmitry Tyrsin³, Yury Fedotov³, Hermann Einsele⁴, Hans-Peter Tony⁴ and Thomas Hünig¹

- 3 healthy male volunteers
- Dosed with 5% of original dose over 4-12h
- No significant AEs
- No evidence of CRS