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 (PK) describes the time 
course of drug concentrations resulting from a 
particular dosing regimen 
 

 (PD) expresses the 
relationship between drug concentrations and 
the resulting pharmacological effects in term of 
safety and efficacy 
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 A model describing the time course of drug 
concentrations vs. time (PK) 

 A model describing the relationship of effect vs. 
concentration (PD) 

 A model linking the PK measurements to the PD 
observations 

 A statistical model describing variability on 
individual response (inter and intra subjects) and 
on measurements  

A Population PK/PD Model is an integrated model including: 
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Extensive PK 
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 Mixed Effects Modeling 
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Benefit > Risk 

Risk > Benefit 
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In the simplest scheme, the rate of change of the response when no 
drug is present is described by 

where kin represents the zero-order rate constant for production of 
response, R, and kout is the first-order rate constant for the loss of 
response variable. The response variable R may be a directly measured 
entity or an observed response, which is immediately proportional to the 
concentration of R 

As the system is assumed to be stationary for these models, the response 
variable (R) begins at a predetermined baseline value (R0), changes with 
time following drug administration, and eventually 
returns back to R0. Thus, kin = koutR0 

𝑑𝑅

𝑑𝑡
= 𝑘𝑖𝑛 − 𝑘𝑜𝑢𝑡𝑅 
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Response 

(R) 

Kin Kout 

Model I III II IV 

The solid bars represent inhibition and the open bars represent 
stimulation of the input and output functions 

The inhibitory function, I(t), and the stimulatory function, S(t), 
can be described as 
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• Data from clinical trial may be available as discrete or 
categorical data 

• cure or symptom relief – yes/no 
• adverse event – yes/no 
• Pain relief or adverse event - normal, mild , moderate, 

severe 
 

•  With only two categories, the outcome is called binary outcome 
 

•  With multiple categories, the data may be  
• nominal (no order) data – e.g. race, sleep stage 
• ordinal (ordered categorical data) – mild moderate, 

severe 
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• There may be only one observation per subject e.g. 

cure/no cure or multiple observations e.g. Nausea/Rash 

 

• The underlying theory for modeling such data is same 

 

• One observation per individual – most severe 

observation – link summary/average PK parameter eg. 

Cavg or AUC (0-t) 

 

• Loss of information – specifically information over time 

 

• Easier or simpler model 

 

• Logistic regression or proportional odds model 
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• Aim is to develop the model where the P(y) can be 
explained by some covariate or predictor variable (xi) 
 

• This refers to the conditional mean of Y given the 
independent variable (x)  E(Y|x) 
 

• For linear regression we have something like 
 Y= β0 + β1x1+ β2x2 + … 

 
• With binary data (0/1) we need to transform the data to 

allow for the estimation of the probability (with values 
ranging from 0 to 1) 
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A logistic model was used to describe the probability (p) of 

observing a somnolence event as function of the maximal 

individual plasma concentration (Cmax) 

 

The probability p was estimated by : 

Where: λ is the logit function, ‘intercept’ is the intercept of 

the logistic function and ‘slope’ is the coefficient of the 

predictor variable 

λ = intercept + slope · Cmax  
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• This is extension of the binary data model 

• Multiple logits are defined 

• Cumulative probability is estimated 
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• Often called survival analysis  
 

• Events may include a PD effect (vomiting, 
experiencing pain, et…), death, injury, onset of 
illness, recovery from illness, DROPOUT, … 
 

• Goal is to: 

˃ Estimate TTE for a group or groups of 
individuals  

˃ To assess the relationship of covariates to TTE 

˃ To be able to predict TTE 
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• Terms: 

˃ Concentration-to-event:  The drug concentration from 
entry into a study until an event occurs 

˃ (Right) Censoring:  Occurs if study ends before a subject 
has an event 

+ We know that the subject did not experienced the event at least 
at the maximal Cp measured 

 

• Data Structure: 

˃ Cpi = Maximal concentration observed or concentration 
at event 

˃ Censoring data value: 
 ci =1 if Cpi is associated with an event;  
 ci =0 if Cpi indicates the maximal concentration observed 

(no event) 
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Concentration-to-event analysis is a collection of statistical 
procedures for data analysis for which the outcome variable is 

the drug concentration  at which an event occurs 
 
The concentrations (Cp) at which an event occurs is considered as 

 a random variable having a probability distribution 

 

The distribution of Cp is characterised by the:  
 Probability Density Function f(Cp) 

 Cumulative Probability Density Function F(Cp)=Prob(CP<=Cp) 

 Concentration-to-event function S(Cp) = Prob(CP>Cp) =1-F(Cp): the 

probability that the event occurs at a concentration lower than c 

 Hazard function h(Cp)=(dF(Cp)/dCp)/S(Cp) : the probability that an 

individual who has not yet experienced the event, will have it at the 

concentration c 
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S() is the probability of not having an event within 

that concentration interval (a-b) (survival): 
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The Hazard is a function of Cp defining the instantaneous 
rate of an event: 

)()( CpCph 
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 An ideal 
treatment would 
provide complete 
response (max 
median survival 
time) for all 
subjects in the 
trial without AE 

An ineffective 
treatment is 
characterized by a 
poor medial survival 
and a high incidence 
of AEs 
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